The New York Times Building
Structural Design Challenges

Presented by:
Jeffrey A. Callow, P.E.
Senior Project Engineer
December 17, 2007
Birth of a building

- NYT wanted a building representative of their stature in the world
 - Represent journalistic ideals of communication and openness
 - Reflect their connection to the city and the neighborhood
 - Improve work efficiency/environment

- Partnered with Forest City Ratner Companies
Birth of a building

- Design Competition in 2000
 - Featured proposals from today’s most renowned architects
- Italian architect Renzo Piano won the competition
 - Partnered with FXFOWLE ARCHITECTS NYC office
Primary design features

- Transparency
 - Newsroom
 - Façade system
 - Exposed structural steel
 - Lobby
- Sustainability
- Technology
Choice of site

- Large footprint
- 52-story tower
- 5-story podium
- Houses entire newsroom
- Western expansion of Times Square redevelopment
Choice of layout

- 52 stories, 744’ to rooftop, 1048’ to tip of mast
- NY Times to occupy lower half of building
 - Fulfills Piano’s vision of connecting the newspaper to its city’s streets
- FCRC to develop upper half of building
 - Premium views from offices
Choice of layout

- Interior architect on board in early schematic design
 - Dimensions of core and shell influenced by Interiors layout
- Corner notches
 - Also help to engage the city sidewalk with the building
Exterior Wall

- Façade system
 - Ultra-transparent glass inner layer
 - Outer skin of closely spaced ceramic tubes to act as sun shade
- Daylighting
 - Blends transparency, sustainability, and technology

Thornton Tomasetti
Exposed Steel

- Columns in four corner notches are brought outside of building envelope
- Building is so transparent you can see its skeleton
- Also maximizes useable space
Overview of structural design

- Foundations
- Floor system
- Lateral system
Overview of structural design

- FOUNDATIONS

- Primarily supported on spread footings over 40 ton rock

- Test borings found 8 ton rock seam under tower

- Redesign of several tower columns with drilled caissons
Overview of structural design

- FLOOR SYSTEM

- Steel framing
- 2 ½” NW composite slab on 3” metal deck
- 40’ typical spans to optimize interior layout
Overview of structural design

- LATERAL SYSTEM
- Core braced frame
 - Concentric braces behind elevator shafts
 - Eccentric braces at elevator lobby entrances
Overview of structural design

- LATERAL SYSTEM
- Outriggers at two levels
 - All columns of tower are engaged in lateral system
 - Located at mid-height and top level mechanical rooms
Structural Design Challenges

- Efficient design of lateral system
- Design of exposed structure
- Detailing of exposed structure
- Resistance to building movements due to thermal differentials
- Cantilevered bay system
- Roof screen walls
- Mast
Efficient design of lateral system

- Core braced frame with outriggers
 - Sufficient for strength
 - Large deflections and accelerations (> 40 milli-g) do not satisfy comfort criteria

Outriggers

Thornton Tomasetti
Efficient design of lateral system

Traditional solution

- Increase member sizes of lateral system to meet comfort criteria
- Members sized beyond what is required for strength
Efficient design of lateral system

Actual solution

- Utilize expressed structure to engage additional gravity columns
- Provides ‘bonus’ redundancy for extreme loading conditions
Efficient design of lateral system

Actual solution

- Exposed X-brace system consists of pairs of high-strength rods (vary from 2.5” to 4” diameter)
- No fireproofing required because rods are not required for strength
Efficient design of lateral system

SUMMARY

- Ability to utilize exoskeleton made structure more efficient
- Minimized size of core columns, allowing for more efficient architectural layout
Exposed columns are built-up box columns

- Web plate was varied to provide additional area for strength/stiffness without compromising overall profile
Design of exposed structure

X-Braces

Typical challenges of X-braces

- Design of compression element
- Rod intersection at midheight
Design of exposed structure
X-Braces

- To eliminate bulky compression member, prestress rods so they remain in tension under wind
Design of exposed structure
X-Braces

- Used pairs of rods
-Eliminates center node and load sharing
- Eliminates eccentricities at column
- Makes structure appear lighter (two small rods instead of one large rod)
Design of exposed structure

Dog-leg beams

- Interior steel beams supporting slab penetrate through façade to frame to exposed column
- Wrapped with insulation to prevent heat transfer
Design of exposed structure
Dog-leg beams

- Raised floor system pushes structural slab 16” below top of finished floor
 - Also pushes slab below spandrel panel
- Solution – make beam ‘dog-leg’ at end connection
Design of exposed structure
Exposed outriggers

- To fully engage exterior bracing lines, outriggers are required
- Used built-up wide flanges to maximize area but minimize width/depth
- Box column interrupted by node to minimize gusset plates
Design of exposed structure
Exposed outriggers

- Interior outriggers need to penetrate façade to reach outer column
- Required coping of member to limit width of penetration
 - Three-plate laminate at end
Design of exposed structure

SUMMARY

- Overall architectural proportion was achieved by varying web plate thickness
- Utilized prestressing to keep exposed members light to maintain transparency of building
- Developed details where members penetrate façade to limit overall size
Detailing of exposed structure

- Exposed exoskeleton is one of primary aesthetic features of building
Detailing of exposed structure

- Use of major structural columns as exposed structural steel
 - Design team specified stringent requirements on Contract Documents
 - All exposed welds ground smooth
 - Steel tolerances to be half of AISC requirements
 - Fully detailed size and shape of gusset plates
 - Intumescent paint required to fireproof building columns
 - Bolt orientation
Detailing of exposed structure

- Knuckle connection
 - Rods frame into ‘bridge’ plates that span between two vertical gusset plates
- Horizontal strut bolted to knuckle as end plate
 - Cover plate welded in field to seal box after bolts installed

Bridge plates
Gusset plates
Detailing of exposed structure

- Knuckle mockup
 - Became part of the Contract Documents
 - Steel subcontractor bound to achieve same quality as mockup
 - Also used as mockup of intumescent paint application
Detailing of exposed structure

- Cooperation between design and construction team was critical to achieve architectural vision

- Architects, in addition to engineers, reviewed each exposed connection on site
Detailing of exposed structure

SUMMARY

- Specific requirements outlined on Contract Documents
 - All parties understood quality that was expected
- Developing constructible details that met architect’s standard of proportion
- Cooperation between design and construction team
Thermal differentials

- Interior steel members are maintained at room temperature
- Exposed members undergo extreme temperature changes
 - Can range from 130°C to -10°C F
Thermal differentials

- Exposed columns undergo temperature deformation and interior columns do not.
- Results in significant differential deflection at upper floors exceeding L/100.
Thermal differentials

- Utilized outrigger trusses to even out differential deflections
- Added thermal trusses along east and west faces
- Limited deflection to L/300 max
- Provides ‘bonus’ redundancy

THERMAL CONTRACTION

OUTSIDE BUILDING (T = -10 F)
INSIDE BUILDING (T = 72 F)
OUTSIDE BUILDING (T = -10 F)
Thermal differentials

SUMMARY

- Accommodated use of exposed structural steel within acceptable serviceability limits
- Structural systems resisting thermal differential movements located within mechanical levels
Cantilevered bays

- No outer columns at north and south bays that form the corner notches

No outer columns
Cantilevered bays

- Architectural vision
- No columns interrupting transparent storefront
- Structure above appears to float above the light storefront

No column from Ground to 2nd floor
Cantilevered bays

- Classical solutions
 - Transfer column at 2nd floor
 - Would have introduced large truss where transparency is most important
 - Cantilever girders on each floor
 - 20’ span requires deep member or diagonal brace for deflection/vibration
 - Cantilever series of beams
 - Huge tonnage premium
 - Hang floors from above
 - Erection sequence issues
Cantilevered bays

Actual solution
- Combination of systems
- Outer edges of bay supported on exposed cantilever
 - Sized for strength
- Single 2” diameter rod to control deflection (no fireproofing)
Cantilevered bays

- Middle line of bay is ladder Vierendeel system
- Moment connected beams to columns
- Ran numerous construction sequence models to specify method of construction
Cantilevered bays

- At outrigger levels, large brace ties middle line back to the core through outrigger trusses
- Provides redundant load path for extreme loading conditions
Cantilevered bays

- System not very stiff when only few floors are moment connected
 - Would deflect considerably
- Use of temporary diagonal
 - Resists deflection until enough floors have been constructed for frame action to take over
- Able to be removed when first outrigger installed
Cantilevered bays

SUMMARY
- Met architectural vision of column-free storefront
- Supported long cantilevers without diagonals through office space
- Kept member sizes at minimum due to presence of rod for deflection control
Roof screen walls

- Façade screens continue beyond roof
 - Illusion that they disappear into the sky
- Highest screen extends 75’ above roof
Roof screen walls

- Roof screen columns are tapered built-up wide flanges (4’-0” deep at base)
- Took advantage of upper mechanical level
 - Extended screen columns to 51st floor to create propped cantilever
 - Avoided kickers at rooftop
Roof screen walls

- Resists lateral force as horizontal couple over two stories
- Simplified connection back to primary structure
Mast

- Completes final transition of building to sky
- 300’ from top of roof
- Extends down to 51st floor similar to roof screen to achieve propped cantilever effect
Mast

- Steel pipe tapers from 8’-0” diameter at base to 8” at top
- Rolled in half pipes and welded together in shop
- Fatigue sensitive details
Mast

- Erected in three segments (bolted splice connections)
"SEAoNY" is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Thank you!
Learning Objectives

- Understand the process with which an engineer can achieve the desired aesthetic of a building
- Learn different solutions to some of the challenges presented in this project
This concludes the American Institute of Architects
Continuing Education System Program

Questions

51 Madison Avenue
New York, NY 10010
P: 917-661-7800
www.ThorntonTomasetti.com