

120 Broadway | New York NY 10271-0009 | T 917.661.7800 | F 917.661.7801 | www.ThorntonTomasetti.com

blank

Aortas, Aneurysms, & AI

With the advanced computational tools and skillset at Thornton Tomasetti, the
life sciences team has developed an exemplar workflow for in silico trials in the
medical device industry, studying biomechanical properties of life-saving
therapies. We used simulations and machine learning (ML) to acquire and
analyze data representing aortic device implantation.

In a previous whitepaper, we described how our virtual cohort was acquired with
anatomy parametrization and finite element analysis (FEA), and how we assessed
traditional classifiers like decision tree (DT) and support vector machine (SVM)
trained on a handful of measurable parameters from the FEA results. The
purpose of this project was to model surgical outcomes for assisting device
design. We explored model interpretability and model performance. Depending
on the application, the appropriate model will address the needs of the particular
medical solution (e.g., a high cost for incorrect predictions might call for more
interpretable models) [1].

Our ML journey began with simple models that were reasonably interpretable
and provided sufficient performance. With such a valuable dataset, we want to
similarly test performance of more complex AI/ML models using the entire
geometry data available to us. In this post, we showcase our capabilities in AI
using neural networks (NN) on the raw spatial geometry dataset in the pursuit of
high-performance modeling.

A Simple Task for Graph Neural Network (GNN)
Demonstration

We chose a simple task to perform on our graph data: graph-level classification.
This means each of our patients (represented as a graph with nodes and edges
with geometrical features) is labeled as a success or failure, using exactly the
same binary labels as before. Specifically, a failure is considered when the
proximal or distal landing zone length is less than 10 mm. It is important to note
that expert labeling could influence the model’s learning and performance.
Presumably, our labeling identifies endoleak failure where there is not enough
coverage to form a proper seal for the stent graft, but a more realistic labeling
might reflect more complex relationships among the data (e.g., a cardiologist
might decide a 9 mm landing zone length is acceptable based on the shape of
the aneurysm in one case due to a constricting geometry, but the same
cardiologist might decide an 11 mm landing zone length is insufficient in a patient
due to a growing aneurysm), which would theoretically call for more complex
models. Therefore, testing models of various complexity is good practice.

Given runtime constraints, we chose to only process the last timepoint of the
aorta and graft materials, excluding the nitinol stent—the 3D rendering of the
stent geometry has too many nodes (more than 100X that of the graft and aorta)
to feasibly train on the GPU, and including more time points from the
implantation simulation would also increase the complexity of our model.

https://spark.thorntontomasetti.com/home/ls/content/6178141797089280/life-sciences-aortas-aneurysms-ai-update-4#popin

Meet the Models

Our dataset consists of 76 samples, each with ~25,000 nodes with spatial
features. The high dimensionality of this dataset points to deep learning, and
recent developments in open-source tools support the graphical nature of the
3D mesh data. Particularly, we found a method that reports to perform incredibly
well on graphs representing 3D geometry: SplineCNN [2]. The math behind this
special SplineConv operation is very well explained in the original work and is
implemented in PyTorch geometric for user-friendly integration into GNN
pipelines [3].

Appropriate processing and model architecture design depends on the task at
hand. Our data is structured as triangular meshes in .stl format. After loading each
sample as a torch_geometric data object, we process these with a Cartesian
transformation, which saves normalized edge attributes necessary for the
SplineConv operation. Other edge weight mappings include 2D Cartesian, polar,
and spherical coordinates. The figure below shows a toy example demonstrating
how to generate the edge attributes matrix with 3D Cartesian coordinates.

We chose a simple architecture with three SplineConv layers and two linear
layers, similar to the scene-level classification task demonstrated with
SplineCNN. Using two SplineConv layers performed worse compared to three
layers, and modeling more channels in the hidden layers increased runtime with
no gain in performance. Our pooling scheme is different than SplineCNN, but
seems to work for our case. Global max pooling performed better than mean or
add.

For training and testing models, we split the data with 53 training samples and 23
testing samples, where the split was stratified with seven failures in the training
set and four failures in the testing set.

The Verdict

Ultimately, we began this endeavor to compare traditional ML models and deep
learning models on virtually the same classification task. In terms of speed and
performance, there are pros and cons for each.

The speed of the traditional ML models is famously fast, where training with low
dimensional input is complete in seconds. This method requires serious
dimensionality reduction and is not feasible to train these models on the raw 3D
geometry. In contrast, our meshGNN model trains for 30 epochs in about an hour
on a NVIDIA GeForce MX150. The runtime depends greatly on the size of the
input, the complexity of the model architecture, and the hardware.

In this demonstration, we saw similar performance across classifiers. Both
traditional ML and deep learning approaches are able to achieve greater than
90% accuracy on this classification task using the same data in different forms.
One consideration is the different train-test splits: for the DT and other traditional
classifiers, we included eight fail cases in the train set, but only seven fail cases
for the meshGNN classifier train set. With less failure examples in the training set,
the deep learning model was still able to distinguish these cases. For now, we
will say that these approaches are tied and each reveals valuable knowledge
from the data in terms of interpretability and performance.

More to Explore

With a small dataset of only 76 virtual patients and an awkward class imbalance
of only 11 failures, we saw limited performance similar to our previous methods
with traditional ML models. Future directions with this dataset could potentially
address this issue, such as data augmentation—a common image processing
step where the dataset size is increased by rotating or flipping original
geometries. Alternatively, this dataset could be used to build generative models
that can synthesize more failure cases. Another exciting direction would be to
model the time-series data of the whole simulation. We could also see
extensions of this project exploring interpretability methods, which is important
for model robustness. Albeit small, this dataset is a valuable resource for any
data scientist, and we look forward to applying these solutions for clients!

References

[1] Amazon Web Services, Inc., "Machine Learning Best Practices in Healthcare
and Life Sciences AWS Whitepaper," Amazon Web Services, Inc., 2021.

[2] M. Fey, J. E. Lenssen, F. Weichert and H. Muller, "SplineCNN: Fast Geometric
Deep Learning with Continuous B-Spline Kernels," Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 869-877, 2018.

[3] M. F. (rusty1s), "Spline-Based Convolution Operator of SplineCNN," GitHub,
[Online]. Available: https://github.com/rusty1s/pytorch_spline_conv.

https://github.com/rusty1s/pytorch_spline_conv

	Aortas, Aneurysms, & AI
	A Simple Task for Graph Neural Network (GNN) Demonstration
	Meet the Models
	The Verdict
	More to Explore
	References

