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Aortas, Aneurysms, & AI 
 
With the advanced computational tools and skillset at Thornton Tomasetti, the 
life sciences team has developed an exemplar workflow for in silico trials in the 
medical device industry, studying biomechanical properties of life-saving 
therapies. We used simulations and machine learning (ML) to acquire and 
analyze data representing aortic device implantation. 

In a previous whitepaper, we described how our virtual cohort was acquired with 
anatomy parametrization and finite element analysis (FEA), and how we assessed 
traditional classifiers like decision tree (DT) and support vector machine (SVM) 
trained on a handful of measurable parameters from the FEA results. The 
purpose of this project was to model surgical outcomes for assisting device 
design. We explored model interpretability and model performance. Depending 
on the application, the appropriate model will address the needs of the particular 
medical solution (e.g., a high cost for incorrect predictions might call for more 
interpretable models) [1]. 

 

Our ML journey began with simple models that were reasonably interpretable 
and provided sufficient performance. With such a valuable dataset, we want to 
similarly test performance of more complex AI/ML models using the entire 
geometry data available to us. In this post, we showcase our capabilities in AI 
using neural networks (NN) on the raw spatial geometry dataset in the pursuit of 
high-performance modeling. 

 



 

 
 
 
 
 

A Simple Task for Graph Neural Network (GNN) 
Demonstration 

We chose a simple task to perform on our graph data: graph-level classification. 
This means each of our patients (represented as a graph with nodes and edges 
with geometrical features) is labeled as a success or failure, using exactly the 
same binary labels as before. Specifically, a failure is considered when the 
proximal or distal landing zone length is less than 10 mm. It is important to note 
that expert labeling could influence the model’s learning and performance. 
Presumably, our labeling identifies endoleak failure where there is not enough 
coverage to form a proper seal for the stent graft, but a more realistic labeling 
might reflect more complex relationships among the data (e.g., a cardiologist 
might decide a 9 mm landing zone length is acceptable based on the shape of 
the aneurysm in one case due to a constricting geometry, but the same 
cardiologist might decide an 11 mm landing zone length is insufficient in a patient 
due to a growing aneurysm), which would theoretically call for more complex 
models. Therefore, testing models of various complexity is good practice. 

 

Given runtime constraints, we chose to only process the last timepoint of the 
aorta and graft materials, excluding the nitinol stent—the 3D rendering of the 
stent geometry has too many nodes (more than 100X that of the graft and aorta) 
to feasibly train on the GPU, and including more time points from the 
implantation simulation would also increase the complexity of our model. 

https://spark.thorntontomasetti.com/home/ls/content/6178141797089280/life-sciences-aortas-aneurysms-ai-update-4#popin


 

 
 
 
 
 

Meet the Models 

Our dataset consists of 76 samples, each with ~25,000 nodes with spatial 
features. The high dimensionality of this dataset points to deep learning, and 
recent developments in open-source tools support the graphical nature of the 
3D mesh data. Particularly, we found a method that reports to perform incredibly 
well on graphs representing 3D geometry: SplineCNN [2]. The math behind this 
special SplineConv operation is very well explained in the original work and is 
implemented in PyTorch geometric for user-friendly integration into GNN 
pipelines [3]. 

Appropriate processing and model architecture design depends on the task at 
hand. Our data is structured as triangular meshes in .stl format. After loading each 
sample as a torch_geometric data object, we process these with a Cartesian 
transformation, which saves normalized edge attributes necessary for the 
SplineConv operation. Other edge weight mappings include 2D Cartesian, polar, 
and spherical coordinates. The figure below shows a toy example demonstrating 
how to generate the edge attributes matrix with 3D Cartesian coordinates. 

 

We chose a simple architecture with three SplineConv layers and two linear 
layers, similar to the scene-level classification task demonstrated with 
SplineCNN. Using two SplineConv layers performed worse compared to three 
layers, and modeling more channels in the hidden layers increased runtime with 
no gain in performance. Our pooling scheme is different than SplineCNN, but 
seems to work for our case. Global max pooling performed better than mean or 
add. 



 

 
 
 
 
 

 

For training and testing models, we split the data with 53 training samples and 23 
testing samples, where the split was stratified with seven failures in the training 
set and four failures in the testing set. 

The Verdict 

Ultimately, we began this endeavor to compare traditional ML models and deep 
learning models on virtually the same classification task. In terms of speed and 
performance, there are pros and cons for each. 

The speed of the traditional ML models is famously fast, where training with low 
dimensional input is complete in seconds. This method requires serious 
dimensionality reduction and is not feasible to train these models on the raw 3D 
geometry. In contrast, our meshGNN model trains for 30 epochs in about an hour 
on a NVIDIA GeForce MX150. The runtime depends greatly on the size of the 
input, the complexity of the model architecture, and the hardware. 

In this demonstration, we saw similar performance across classifiers. Both 
traditional ML and deep learning approaches are able to achieve greater than 
90% accuracy on this classification task using the same data in different forms. 
One consideration is the different train-test splits: for the DT and other traditional 
classifiers, we included eight fail cases in the train set, but only seven fail cases 
for the meshGNN classifier train set. With less failure examples in the training set, 
the deep learning model was still able to distinguish these cases. For now, we 
will say that these approaches are tied and each reveals valuable knowledge 
from the data in terms of interpretability and performance. 



 

 
 
 
 
 
 

 

More to Explore 

With a small dataset of only 76 virtual patients and an awkward class imbalance 
of only 11 failures, we saw limited performance similar to our previous methods 
with traditional ML models. Future directions with this dataset could potentially 
address this issue, such as data augmentation—a common image processing 
step where the dataset size is increased by rotating or flipping original 
geometries. Alternatively, this dataset could be used to build generative models 
that can synthesize more failure cases. Another exciting direction would be to 
model the time-series data of the whole simulation. We could also see 
extensions of this project exploring interpretability methods, which is important 
for model robustness. Albeit small, this dataset is a valuable resource for any 
data scientist, and we look forward to applying these solutions for clients! 
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